Enhanced HMM Speech Emotion Recognition using SVM and Neural Classifier
نویسندگان
چکیده
منابع مشابه
Hybrid SVM/HMM architectures for speech recognition
In this paper, we describe the use of a powerful machine learning scheme, Support Vector Machines (SVM), within the framework of hidden Markov model (HMM) based speech recognition. The hybrid SVM/HMM system has been developed based on our public domain toolkit. The hybrid system has been evaluated on the OGI Alphadigits corpus and performs at 11.6% WER, as compared to 12.7% with a triphone mixt...
متن کاملSvm-hmm Landmark Based Speech Recognition
Support vector machines (SVMs) are trained to detect acoustic-phonetic landmarks, and to identify both the manner and place of articulation of the phones producing each landmark with high accuracy. The discriminant outputs of these SVMs are used as input features for a standard HMM based ASR system. There is a significant improvement in both the phone and word recognition accuracy when using th...
متن کاملRecurrent neural network-enhanced HMM speech recognition systems
Keywor ds : speech segmentation, speech recognition, recurrent neural networks, extended recurrent neural networks, bi-directional recurrent neural networks, hidden Markov models Speech recognition is fast becoming an attractive form of communicat ion between humans and machines, due to the recent advances made in the field. The technology is, however, far from being acceptable when used in an ...
متن کاملSVM Scheme for Speech Emotion Recognition using MFCC Feature
Emotion recognition from speech has developed as a recent research area in Human–Computer Interaction. The objective of this paper is to use a 3-stage Support Vector Machine classifier to classify seven different emotions present in the Berlin Emotional Database. For the purpose of classification, MFCC features from all the 535 files present in the database are extracted. Nine statistical measu...
متن کاملA Hybrid HMM/SVM Classifier for Wavelet Front End Robust Automatic Speech Recognition
Noisy ambient conditions pose a challenge to speech recognition, increasing the acoustic confusability, thereby looking for powerful acoustic models to improve the generalization ability of the machine learning and improve the recognition accuracy. This paper discusses a hybrid classifier that harness the power of hidden markov models (HMM) and the discriminative support vector machines (SVM) a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2014
ISSN: 0975-8887
DOI: 10.5120/15260-3914